Published in

IOS Press, Journal of Alzheimer's Disease, 3(79), p. 1023-1032, 2021

DOI: 10.3233/jad-201033

Links

Tools

Export citation

Search in Google Scholar

AD Resemblance Atrophy Index as a Diagnostic Biomarker for Alzheimer’s Disease: A Retrospective Clinical and Biological Validation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Magnetic resonance imaging (MRI) provides objective information about brain structural atrophy in patients with Alzheimer’s disease (AD). This multi-structural atrophic information, when integrated as a single differential index, has the potential to further elevate the accuracy of AD identification from normal control (NC) compared to the conventional structure volumetric index. Objective: We herein investigated the performance of such an MRI-derived AD index, AD-Resemblance Atrophy Index (AD-RAI), as a neuroimaging biomarker in clinical scenario. Method: Fifty AD patients (19 with the Amyloid, Tau, Neurodegeneration (ATN) results assessed in cerebrospinal fluid) and 50 age- and gender-matched NC (19 with ATN results assessed using positron emission tomography) were recruited in this study. MRI-based imaging biomarkers, i.e., AD-RAI, were quantified using AccuBrain®. The accuracy, sensitivity, specificity, and area under the ROC curve (AUC) of these MRI-based imaging biomarkers were evaluated with the diagnosis result according to clinical criteria for all subjects and ATN biological markers for the subgroup. Results: In the whole groups of AD and NC subjects, the accuracy of AD-RAI was 91%, sensitivity and specificity were 88% and 96%, respectively, and the AUC was 92%. In the subgroup of 19 AD and 19 NC with ATN results, AD-RAI results matched completely with ATN classification. AD-RAI outperforms the volume of any single brain structure measured. Conclusion: The finding supports the hypothesis that MRI-derived composite AD-RAI is a more accurate imaging biomarker than individual brain structure volumetry in the identification of AD from NC in the clinical scenario.