Published in

MDPI, Cancers, 2(13), p. 258, 2021

DOI: 10.3390/cancers13020258

Links

Tools

Export citation

Search in Google Scholar

A Paravermal Trans-Cerebellar Approach to the Posterior Fossa Tumor Causes Hypertrophic Olivary Degeneration by Dentate Nucleus Injury

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: In brain tumor surgery, injury to cerebellar connectivity pathways can induce a neurodegenerative disease called hypertrophic olivary degeneration (HOD), along with a disabling clinical syndrome. In children, cerebellar mutism syndrome (CMS) is another consequence of damage to cerebello–thalamo–cortical networks. The goal of this study was to compare paravermal trans-cerebellar to other more midline or lateral operative approaches in their risk of causing HOD on MR-imaging and CMS. Methods: We scanned our neurosurgical database for patients with surgical removal of pilocytic astrocytoma, ependymoma and medulloblastoma in the posterior fossa. Fifty patients with a mean age of 22.7 (±16.9) years were identified and analyzed. Results: HOD occurred in n = 10/50 (20%) patients within four months (median), always associated with contralateral dentate nucleus (DN)-lesions (p < 0.001). Patients with paravermal trans-cerebellar approach significantly more often developed HOD (7/11; 63.6%) when compared to other approaches (3/39; 7.7%; p < 0.001). Injury to the DN occurred more frequently after a paravermal approach (8/11 vs. 13/39 patients; p < 0.05). CMS was described for n = 12/50 patients (24%). Data indicated no correlation of radiological HOD and CMS development. Conclusions: A paravermal trans-cerebellar approach more likely causes HOD due to DN-injury when compared to more midline or lateral approaches. HOD is a radiological indicator for surgical disruption of cerebellar pathways involving the DN. Neurosurgeons should consider trajectories and approaches in the planning of posterior fossa surgery that spare the DN, whenever feasible.