Published in

American Association for the Advancement of Science, Science, 6530(371), 2021

DOI: 10.1126/science.abe6230

Links

Tools

Export citation

Search in Google Scholar

Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A double punch against SARS-CoV-2 Monoclonal antibodies are an important weapon in the battle against COVID-19. However, these large proteins are difficult to produce in the needed quantities and at low cost. Attention has turned to nanobodies, which are aptly named, single-domain antibodies that are easier to produce and have the potential to be administered by inhalation. Koenig et al. describe four nanobodies that bind to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prevent infection of cells (see the Perspective by Saelens and Schepens). Structures show that the nanobodies target two distinct epitopes on the SARS-CoV-2 spike protein. Multivalent nanobodies neutralize virus much more potently than single nanobodies, and multivalent nanobodies that bind two epitopes prevent the emergence of viral escape mutants. Science , this issue p. eabe6230 ; see also p. 681