Published in

MDPI, Animals, 1(11), p. 137, 2021

DOI: 10.3390/ani11010137

Links

Tools

Export citation

Search in Google Scholar

The Protective Role of Alpha-Ketoglutaric Acid on the Growth and Bone Development of Experimentally Induced Perinatal Growth-Retarded Piglets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effect of alpha-ketoglutaric acid (AKG) supplementation to experimentally-induced, perinatal growth-retarded piglets was examined. Sows were treated with a synthetic glucocorticoid (Gc) during the last 25 days of pregnancy, and after the birth, piglets were randomly divided into three groups depending on the treatment. The Gc/Gc + AKG and Gc/AKG groups born by Gc-treated sows after the birth were treated with Gc or Gc + AKG for 35 days. Significantly lower serum growth hormone, IGF-I, osteocalcin, leptin, and cortisol concentrations were observed in the Gc/Gc + AKG group, while the bone alkaline phosphatase activity was significantly higher. Serum insulin concentration was higher in the control group. Serum alanine, lysine, histidine, and tryptophan concentrations were higher in the Gc/Gc + AKG and Gc/AKG groups. The perinatal action of Gc significantly affects histomorphometry of articular cartilage and trabecular bone and bone mechanics. The results clearly showed that dietary AKG had positive effects with regards to the profile of free amino acids. Taking into account the function of AKG as an energy donor and stimulator of collagen synthesis, it can be concluded that the anabolic role of AKG may be the main mechanism responsible for its protective effect against the GC-induced perinatal intensified catabolic state.