Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Biology, 1(10), p. 37, 2021

DOI: 10.3390/biology10010037

Links

Tools

Export citation

Search in Google Scholar

A Modelling Framework Linking Resource-Based Stochastic Translation to the Optimal Design of Synthetic Constructs

Journal article published in 2021 by Peter Sarvari, Duncan Ingram ORCID, Guy-Bart Stan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effect of gene expression burden on engineered cells has motivated the use of “whole-cell models” (WCMs) that use shared cellular resources to predict how unnatural gene expression affects cell growth. A common problem with many WCMs is their inability to capture translation in sufficient detail to consider the impact of ribosomal queue formation on mRNA transcripts. To address this, we have built a “stochastic cell calculator” (StoCellAtor) that combines a modified TASEP with a stochastic implementation of an existing WCM. We show how our framework can be used to link a synthetic construct’s modular design (promoter, ribosome binding site (RBS) and codon composition) to protein yield during continuous culture, with a particular focus on the effects of low-efficiency codons and their impact on ribosomal queues. Through our analysis, we recover design principles previously established in our work on burden-sensing strategies, namely that changing promoter strength is often a more efficient way to increase protein yield than RBS strength. Importantly, however, we show how these design implications can change depending on both the duration of protein expression, and on the presence of ribosomal queues.