Published in

IOP Publishing, Nuclear Fusion, 3(61), p. 036038, 2021

DOI: 10.1088/1741-4326/abd95f

Links

Tools

Export citation

Search in Google Scholar

Influence of interface conditions on hydrogen transport studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract This work investigates the influence of hydrogen chemical potential continuity across solid material interfaces. The implementation of the mathematical model in FESTIM is verified using the method of exact solutions (MES) and the method of manufactured solutions (MMS) in 1D, 2D, with complex material properties and inhomogeneous temperature fields. A comparison test between FESTIM, TMAP7 and Abaqus codes is also performed and the codes show good agreement. The chemical potential continuity condition has an impact up to 40% on the outgassing particle flux on 4 mm composite slabs (W/Cu and Cu/EUROFER) compared to mobile concentration continuity. A method for rapid identification of materials properties from outgassing flux measurements is given. The influence of chemical potential conservation on monoblock inventory is then studied. It is shown that, for the 1D and 2D ITER divertor monobolocks cases, discrepancies only start to appear after approximately 5 × 106 s of full power.