Dissemin is shutting down on January 1st, 2025

Published in

Microwave Heating [Working Title], 2020

DOI: 10.5772/intechopen.94931

Links

Tools

Export citation

Search in Google Scholar

Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Among the chemical methods in the liquid phase, the sol–gel technique is a versatile and efficient method for pure or doped metal oxide films or powders preparation, showing some advantages over other preparation techniques (high homogeneity, the possibility to introducing dopants in large amount, low processing temperature and control over the stoichiometry). Combining the sol–gel (SG)method with the effect of ultrasounds(US) or microwaves (MW) leads to improving the sol–gel procedure. The microwave-assisted sol–gel method is most frequently used for obtaining nanocrystalline, monodispersed oxide nanoparticles, or to transform amorphous gels into well-crystallized nanopowders. Less studied is the influence of the microwaves on the sol–gel reactions in solutions. The benefit of using microwave-assisted sol–gel preparation highly depends on the reagents used and on the composition of the studied systems. In the present chapter, results on the influence of the microwaves on the chemical reactions that take place during the sol–gel synthesis and on the properties of the resulted samples are discussed.