Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Water, 2(13), p. 110, 2021

DOI: 10.3390/w13020110

Links

Tools

Export citation

Search in Google Scholar

Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigated sediment spatial and seasonal distribution of trace elements (TEs) (n = 16) and human health effects along the Hooghly River Estuary (India). The index of geo-accumulation (Igeo), enrichment factor (EF), hazard quotient (HQ), modified hazard quotient (mHQ) and toxic risk unit (TRI) were calculated to estimate sediment pollution level, while hazard index (HI) and lifetime cancer risk (LCR) were used to assess TEs enrichment vs. human health. The concentrations (µg/g dry weight) of TEs were: Cd (0.01–1.58), Cr (41.98–105.49), Cu (16.41–51.09), Ni (28.37–63.90), Fe (22075–47919), Mn (423–630), Co (11.43–23.11), Zn (48.82–105.81), V (63.92–138.92), Pb (25.01–43.27) and Ti (0.18–3.50); As (2.92–16.26), B (59.34–98.78), Si (11.52–98.78); Be (1.71–4.81), Ba (95.23–293.72). From Igeo and EF, Cd was the major contaminant, while Ni presented moderate/high contamination (HQ and TRI). Children were more exposed to carcinogenic and non-carcinogenic risks compared to adults. For non-carcinogenic substances, no significant risk was found to both children and adults (HIs < 1). The LCR for Cr (3.924 × 10−4 for children) and As (1.379 × 10−4 for children) was higher than the threshold limit value (TLV, 10−4 and 10−6) indicating significant carcinogenic risks to be managed.