Published in

IOP Publishing, Environmental Research Letters, 2(16), p. 024021, 2021

DOI: 10.1088/1748-9326/abd8fa

Links

Tools

Export citation

Search in Google Scholar

Rain-fed pulses of methane from East Africa during 2018-2019 contributed to atmospheric growth rate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract East Africa is a key location for wetland emissions of methane (CH4), driven by variations in rainfall that are in turn influenced by sea-surface temperature gradients over the Indian Ocean. Using satellite observations of CH4 and an atmospheric chemistry-transport model, we quantified East African CH4 emissions during 2018 and 2019 when there was 3-σ anomalous rainfall during the long rains (March–May) in 2018 and the short rains (October–December) in 2019. These rainfall anomalies resulted in CH4 emissions of 6.2 ± 0.3 Tg CH4 and 8.6 ± 0.3 Tg CH4, in each three month period, respectively, and represent a 10% and 37% increase compared to the equivalent season in the opposite year, when rainfall was close to the long-term seasonal mean. We find the additional short rains emissions were equivalent to over a quarter of the growth in global emissions in 2019, highlighting the disproportionate role of East Africa in the global CH4 budget.