Published in

IOP Publishing, Materials Research Express, 1(8), p. 016406, 2021

DOI: 10.1088/2053-1591/abd8a1

Links

Tools

Export citation

Search in Google Scholar

Salisbury screen absorbers using epsilon-near-zero substrate

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract As a planar resonant structure, Salisbury screen offers a cost-effective way of manipulating electromagnetic waves for both fundamental studies and practical applications in optoelectronics. In this paper, we demonstrate Salisbury screen absorbers using epsilon-near-zero substrate, which reduces the spacer thickness below typical one quarter wavelength limit. Three-layered thin-film absorbers made of SiC substrate, ZnSe spacer layer and top NiCr film are designed and fabricated, which exhibit near-perfect absorption at 11.72 μm with spacer thickness of about half of a quarter-wavelength. For ideal zero-index material without optical loss, our proposed thin-film absorber simplifies to a two-layered structure even without the spacer layer in theory. These results suggest that epsilon-near-zero materials provide an alternative approach in developing compact planar absorbing structures without involving lithographic patterning.