Published in

MDPI, International Journal of Molecular Sciences, 1(22), p. 447, 2021

DOI: 10.3390/ijms22010447

Links

Tools

Export citation

Search in Google Scholar

Evolution of A bHLH Interaction Motif

Journal article published in 2021 by Peter S. Millard ORCID, Birthe B. Kragelund ORCID, Meike Burow ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Intrinsically disordered proteins and regions with their associated short linear motifs play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates interactions between MYC and MYB transcription factors in Arabidopsis thaliana that are critical for constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense compounds that evolved in the ancestor of the Brassicales order. We used a diverse set of search strategies to discover additional occurrences of the MIM in other proteins and in other organisms and evaluate the findings by means of structural predictions, interaction assays, and biophysical experiments. Our search revealed numerous MIM instances spread throughout the angiosperm lineage. Experiments verify that several of the newly discovered MIM-containing proteins interact with MYC TFs. Only hits found within the same transcription factor family and having similar characteristics could be validated, indicating that structural predictions and sequence similarity are good indicators of whether the presence of a MIM mediates interaction. The experimentally validated MIMs are found in organisms outside the Brassicales order, showing that MIM function is broader than regulating GLS biosynthesis.