Published in

CSIRO Publishing, Australian Journal of Zoology, 6(67), p. 305, 2019

DOI: 10.1071/zo20055

Links

Tools

Export citation

Search in Google Scholar

Ghost bats exhibit informative daily and seasonal temporal patterns in the production of social vocalisations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ghost bat (Macroderma gigas) is a colonial and highly vocal species that is impacted by human visitation of caves. The ability to document behaviours inside the roost by recording vocalisations could provide an important new tool for the management of this disturbance-prone species by removing the need for in-person confirmation of reproductive activity, and, in turn, identifying roosts of conservation importance. To assess whether vocalisations are indicators of daily and seasonal behavioural events, we aimed to determine whether total vocal activity significantly varied by time of day and time of year and, further, how the relative frequencies of occurrence of three common social vocalisations (‘Chirp-trill’, ‘Squabble’ and ‘Ultrasonic Social’) aligned with previously reported seasonal reproductive behaviour. We recorded sound inside the largest known maternity roost, extracted all vocal signals and classified them into types using semiautomated methods. Total vocal activity varied significantly by time of day and time of year, peaking around sunrise and sunset, and during the mating and nursing seasons. The relative frequencies of occurrence of vocalisation types varied significantly seasonally, with the Chirp-trill and Squabble produced most during the mating season and first flight periods, whereas the Ultrasonic Social peaked during parturition and weaning periods. This timing aligns with a previously suggested vocalisation function, providing further evidence that these signals are important in mating and maternity behaviours. Further, this suggests that peaks in the relative frequency of occurrence of distinct social vocalisations may act as indicators of in-roost reproductive and pup development behaviours and provides a low-disturbance, semiautomated method for using long-term acoustic recordings to study and monitor behaviour in this sensitive species.