Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 2(118), 2021

DOI: 10.1073/pnas.2007683118

Links

Tools

Export citation

Search in Google Scholar

Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Copper-based (cuprate) oxides are not only the original but also one of the best-studied families of “high-temperature” superconductors. With nominally identical crystal structure and electron count, nickel-based (nickelate) compounds have been widely pursued for decades as a possible analog to the cuprates. The recent demonstration of superconductivity in nickelate thin films has provided an experimental platform to explore the possible connections between the copper- and nickel-based superconductors. Here, we perform highly localized spectroscopic measurements to reveal a number of key differences between the two systems, particularly with regard to the hybridization between the O and metal (Cu or Ni) orbitals.