Published in

MDPI, Polymers, 1(13), p. 159, 2021

DOI: 10.3390/polym13010159

Links

Tools

Export citation

Search in Google Scholar

Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Demand of scaffolds for hard tissue repair increases due to a higher incidence of fractures related to accidents and bone-diseases that are linked to the ageing of the population. Namely, scaffolds loaded with bioactive agents can facilitate the bone repair by favoring the bone integration and avoiding post-grafting complications. Supercritical (sc-)foaming technology emerges as a unique solvent-free approach for the processing of drug-loadenu7d scaffolds at high incorporation yields. In this work, medicated poly(ε-caprolactone) (PCL) scaffolds were prepared by sc-foaming coupled with a leaching process to overcome problems of pore size tuning of the sc-foaming technique. The removal of the solid porogen (BA, ammonium bicarbonate) was carried out by a thermal leaching taking place at 37 °C and in the absence of solvents for the first time. Macroporous scaffolds with dual porosity (50–100 µm and 200–400 µm ranges) were obtained and with a porous structure directly dependent on the porogen content used. The processing of ketoprofen-loaded scaffolds using BA porogen resulted in drug loading yields close to 100% and influenced its release profile from the PCL matrix to a relevant clinical scenario. A novel solvent-free strategy has been set to integrate the incorporation of solid porogens in the sc-foaming of medicated scaffolds.