Published in

Public Library of Science, PLoS ONE, 12(15), p. e0237622, 2020

DOI: 10.1371/journal.pone.0237622

Links

Tools

Export citation

Search in Google Scholar

Home-EEG assessment of possible compensatory mechanisms for sleep disruption in highly irregular shift workers – The ANCHOR study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Study objectives While poor sleep quality has been related to increased risk of Alzheimer’s disease, long-time shift workers (maritime pilots) did not manifest evidence of early Alzheimer’s disease in a recent study. We explored two hypotheses of possible compensatory mechanisms for sleep disruption: Increased efficiency in generating deep sleep during workweeks (model 1) and rebound sleep during rest weeks (model 2). Methods We used data from ten male maritime pilots (mean age: 51.6±2.4 years) with a history of approximately 18 years of irregular shift work. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). A single lead EEG-device was used to investigate sleep in the home/work environment, quantifying total sleep time (TST), deep sleep time (DST), and deep sleep time percentage (DST%). Using multilevel models, we studied the sleep architecture of maritime pilots over time, at the transition of a workweek to a rest week. Results Maritime pilots reported worse sleep quality in workweeks compared to rest weeks (PSQI = 8.2±2.2 vs. 3.9±2.0; p<0.001). Model 1 showed a trend towards an increase in DST% of 0.6% per day during the workweek (p = 0.08). Model 2 did not display an increase in DST% in the rest week (p = 0.87). Conclusions Our findings indicated that increased efficiency in generating deep sleep during workweeks is a more likely compensatory mechanism for sleep disruption in the maritime pilot cohort than rebound sleep during rest weeks. Compensatory mechanisms for poor sleep quality might mitigate sleep disruption-related risk of developing Alzheimer’s disease. These results should be used as a starting point for future studies including larger, more diverse populations of shift workers.