Published in

MDPI, Diagnostics, 1(11), p. 47, 2020

DOI: 10.3390/diagnostics11010047

Links

Tools

Export citation

Search in Google Scholar

Kidney Transplantation and Diagnostic Imaging: The Early Days and Future Advancements of Transplant Surgery

Journal article published in 2020 by Stan Benjamens ORCID, Cyril Moers ORCID, Riemer H. J. A. Slart ORCID, Robert A. Pol
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The first steps for modern organ transplantation were taken by Emerich Ullmann (Vienne, Austria) in 1902, with a dog-to-dog kidney transplant, and ultimate success was achieved by Joseph Murray in 1954, with the Boston twin brothers. In the same time period, the ground-breaking work of Wilhelm C. Röntgen (1895) and Maria Sklodowska-Curie (1903), on X-rays and radioactivity, enabled the introduction of diagnostic imaging. In the years thereafter, kidney transplantation and diagnostic imaging followed a synergistic path for their development, with key discoveries in transplant rejection pathways, immunosuppressive therapies, and the integration of diagnostic imaging in transplant programs. The first image of a transplanted kidney, a urogram with intravenous contrast, was shown to the public in 1956, and the first recommendations for transplantation diagnostic imaging were published in 1958. Transplant surgeons were eager to use innovative diagnostic modalities, with renal scintigraphy in the 1960s, as well as ultrasound and computed tomography in the 1970s. The use of innovative diagnostic modalities has had a great impact on the reduction of post-operative complications in kidney transplantation, making it one of the key factors for successful transplantation. For the new generation of transplant surgeons, the historical alignment between transplant surgery and diagnostic imaging can be a motivator for future innovations.