Published in

SCIENCEDOMAIN International, Journal of Applied Life Sciences International, p. 31-39, 2020

DOI: 10.9734/jalsi/2020/v23i1230202

Links

Tools

Export citation

Search in Google Scholar

Vasorelaxant Effect Induced by the Essential Oil of Ocotea duckei Vattimo Leaves and Its Main Constituent, Trans-caryophyllene, in Rat Mesenteric Artery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aims: To evaluate the vasorelaxant effect induced by the essential oil of the leaves of O. duckei Vattimo (ODEO) and its main constituent, trans-caryophyllene, in rat superior mesenteric arteries. Methodology: Isolated rat superior mesenteric rings were suspended by cotton threads for isometric tension recordings in Tyrode’s solution at 37ºC, gassed with 95% O2 and 5% CO2 and different ODEO concentrations (0.1-300 μg/mL) or trans-caryophyllene (1-1000 μg/mL) were added cumulatively to the organ baths. Results: Vasorelaxant effect induced by the essential oil of Ocotea duckei leaves (ODEO) and its main constituent, trans-caryophyllene (60.54 %), was evaluated in this work. In intact isolated rat superior mesenteric rings ODEO (0.1-300 μg/mL, n=6) induced concentration-dependent relaxation of tonus induced by phenylephrine (10 µM) or K+-depolarizing solution (KCl 80 mM) (IC50=31±5, 5±0.4 µg/mL, respectively, n=6). The relaxations of phenylephrine-induced contractions were not significantly attenuated after removal of the vascular endothelium (IC50=25±5 µg/mL). ODEO antagonized the concentration-response curves to CaCl2 (10-6-3x10-2 M) and Bay K 8644 (10-10-3x10-6 M). Furthermore, in nominally without calcium solution, ODEO significantly inhibited, in a concentration-dependent manner, transient contractions induced by 10 µM phenylephrine or 20 µM caffeine. Trans-caryophyllene induced vasorelaxations, however, this effect was 18.6 times less potent when compared to ODEO-induced vasorelaxations. Conclusion: The relaxant effect induced by ODEO in rat superior mesenteric artery rings is endothelium-independent and seems to be related to both, inhibition of Ca2+ influx through L-type voltage-gated Ca2+-channels sensitive to dihydropyridines and inhibition of the calcium release from intracellular IP3-and caffeine-sensitive stores.