Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Microorganisms, 1(9), p. 57, 2020

DOI: 10.3390/microorganisms9010057

Links

Tools

Export citation

Search in Google Scholar

Azole-Resistant Aspergillus fumigatus Harboring the TR34/L98H Mutation: First Report in Portugal in Environmental Samples

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Introduction: The frequency in detection of azole-resistant Aspergillus fumigatus isolates has increased since 2010. In Portugal, the section Fumigati is one of the most frequent, and resistant strains to have been found in clinical and environmental contexts. Although several cryptic species within the Fumigati section show intrinsic resistance to azoles, one factor driving (acquired) resistance is selective pressure deriving from the extensive use of azoles. This is particularly problematic in occupational environments where high fungal loads are expected, and where there is an increased risk of human exposure and infection, with impact on treatment success and disease outcome. The mechanisms of resistance are diverse, but mainly associated with mutations in the cyp51A gene. Despite TR34/L98H being the most frequent mutation described, it has only been detected in clinical specimens in Portugal. Methods: We analyzed 99 A. fumigatus isolates from indoor environments (healthcare facilities, spas, one dairy and one waste sorting unit) collected from January 2018 to February 2019 in different regions of Portugal. Isolates were screened for resistance to itraconazole, voriconazole and posaconazole by culture, and resistance was confirmed by broth microdilution. Sequencing of the cyp51A gene and its promoter was performed to detect mutations associated with resistance. Results: Overall, 8.1% of isolates were able to grow in the presence of at least one azole, and 3% (isolated from the air in a dairy and from filtering respiratory protective devices in a waste sorting industry) were pan-azole-resistant, bearing the TR34/L98H mutation. Conclusion: For the first time in Portugal, we report environmental isolates bearing the TR34/L98H mutation, isolated from occupational environments. Environmental surveillance of the emergence of azole-resistant A. fumigatus sensu stricto strains is needed, to ensure proper and timely implementation of control policies that may have a positive impact on public and occupational health.