Published in

MDPI, Applied Sciences, 1(11), p. 130, 2020

DOI: 10.3390/app11010130

Links

Tools

Export citation

Search in Google Scholar

Single-Leg Landings Following a Volleyball Spike May Increase the Risk of Anterior Cruciate Ligament Injury More Than Landing on Both-Legs

Journal article published in 2020 by Datao Xu, Xinyan Jiang ORCID, Xuanzhen Cen ORCID, Julien S. Baker ORCID, Yaodong Gu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Volleyball players often land on a single leg following a spike shot due to a shift in the center of gravity and loss of balance. Landing on a single leg following a spike may increase the probability of non-contact anterior cruciate ligament (ACL) injuries. The purpose of this study was to compare and analyze the kinematics and kinetics differences during the landing phase of volleyball players using a single leg (SL) and double-leg landing (DL) following a spike shot. The data for vertical ground reaction forces (VGRF) and sagittal plane were collected. SPM analysis revealed that SL depicted a smaller knee flexion angle (about 13.8°) and hip flexion angle (about 10.8°) during the whole landing phase, a greater knee and hip power during the 16.83–20.45% (p = 0.006) and 13.01–16.26% (p = 0.008) landing phase, a greater ankle plantarflexion angle and moment during the 0–41.07% (p < 0.001) and 2.76–79.45% (p < 0.001) landing phase, a greater VGRF during the 5.87–8.25% (p = 0.029), 19.75–24.14% (p = 0.003) landing phase when compared to DL. Most of these differences fall within the time range of ACL injury (30–50 milliseconds after landing). To reduce non-contact ACL injuries, a landing strategy of consciously increasing the hip and knee flexion, and plantarflexion of the ankle should be considered by volleyball players.