Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Aerospace, 1(8), p. 4, 2020

DOI: 10.3390/aerospace8010004

Links

Tools

Export citation

Search in Google Scholar

LEO Object’s Light-Curve Acquisition System and Their Inversion for Attitude Reconstruction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In recent years, the increase in space activities has brought the space debris issue to the top of the list of all space agencies. The fact of there being uncontrolled objects is a problem both for the operational satellites in orbit (avoiding collisions) and for the safety of people on the ground (re-entry objects). Optical systems provide valuable assistance in identifying and monitoring such objects. The Sapienza Space System and Space Surveillance (S5Lab) has been working in this field for years, being able to take advantage of a network of telescopes spread over different continents. This article is focused on the re-entry phase of the object; indeed, the knowledge of the state of the object, in terms of position, velocity, and attitude during the descent, is crucial in order to predict as accurately as possible the impact point on the ground. A procedure to retrieve the light curves of orbiting objects by means of optical data will be shown and a method to obtain the attitude determination from their inversion based on a stochastic optimization (genetic algorithm) will be proposed.