Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cells, 1(10), p. 11, 2020

DOI: 10.3390/cells10010011

Links

Tools

Export citation

Search in Google Scholar

TIME Is a Great Healer—Targeting Myeloid Cells in the Tumor Immune Microenvironment to Improve Triple-Negative Breast Cancer Outcomes

Journal article published in 2020 by Swarnima Singh ORCID, Xiang H. F. Zhang ORCID, Jeffrey M. Rosen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The word myeloid is derived from the Greek word muelós which means “marrow”. Therefore, myeloid cells are described as cells that arise in the bone marrow. They can be distinguished from lymphoid cells based on their different differentiation trajectories—Lymphoid cells (B and T cells) are usually born in the bone marrow, but they need to migrate to lymphoid organs to mature and differentiate usually in response to antigens produced due to infections and diseases like cancer. On the other hand, myeloid cells do not follow this differentiation trajectory. They arise from the bone marrow, and do not need an encounter with antigens to gain their functionality. Thus, while lymphoid cells are a part of the adaptive immune system, myeloid cells are a part of the innate immune system. Hematopoiesis gives rise to two progenitor cells—the common myeloid progenitor (CMP) and the common lymphoid progenitor (CLP). The CMP can give rise to megakaryocytes, erythrocytes, mast cells and myeloblasts. Myeloblasts in turn lead to the formation of basophils, neutrophils, eosinophils and monocytes that can further differentiate into macrophages. This review will focus on macrophages as well as the phenotypes they acquire with the tumor immune microenvironment (TIME) in triple-negative breast cancer (TNBC). It will address how cancer cells in the tumor microenvironment (TME) recruit macrophages and may switch to recruiting neutrophils upon depletion of these tumor-associated macrophages (TAMs). Finally, it will also shed light on past and current treatment options that specifically target these cells and how those affect patient outcomes in TNBC.