Published in

IOP Publishing, Journal of Physics: Materials, 2(4), p. 022004, 2021

DOI: 10.1088/2515-7639/abd596

Links

Tools

Export citation

Search in Google Scholar

2021 Roadmap: electrocatalysts for green catalytic processes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Serious challenges in energy and the environment require us to find solutions that use sustainable processes. There are many sustainable electrocatalytic processes that might provide the answers to the above-mentioned challenges, such as the oxygen reduction reaction (ORR), water splitting, the carbon dioxide reduction reaction (CO2RR), and the nitrogen reduction reaction (NRR). These reactions can enhance the value added by producing hydrogen energy through water splitting or convert useless CO2 and N2 into fuels and NH3. These electrocatalytic reactions can be driven by high-performance catalysts. Therefore, the exploration of novel electrocatalysts is one of the important electrocatalytic fields. In this paper, we aim to systematically discuss a variety of electrocatalysts used for sustainable processes and to give further insights into their status and associated challenges. We invited many famous research groups to write this roadmap with topics including platinum (Pt) and its alloys for ORR, oxides for ORR, chalcogenides for ORR, carbon-based hollow electrocatalysts for ORR, carbides for ORR, atomically dispersed Fe–N–C catalysts for ORR, metal-free catalysts for ORR, single-atom catalysts (SACs) for ORR, metal boride (MB) electrocatalysts for water splitting, transitional metal carbides (TMCs) for water splitting, transition metal (TM) phosphides for water splitting, oxides for water splitting, sulfides for water splitting, layered double hydroxides for water splitting, carbon-based electrocatalysts for water splitting, Ru-based electrocatalysts for water splitting, metal oxides for CO2RR, metal sulfides for CO2RR, metals for CO2RR, carbon for CO2RR, SACs for CO2RR, heterogeneous molecular catalysts for CO2RR, oxides for NRR, chalcogenides for NRR, C3N4 for NRR, SACs for NRR, etc. Their contributions enabled us to compile this 2020 roadmap on electrocatalysts for green catalytic processes and provide some suggestions for future researchers.