Published in

Oxford University Press, Biological Journal of the Linnean Society, 2(132), p. 297-317, 2020

DOI: 10.1093/biolinnean/blaa192

Links

Tools

Export citation

Search in Google Scholar

The scales of coevolution: comparative phylogeography and genetic demography of a locally adapted venomous predator and its prey

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Coevolutionary theory predicts that differences in the genetic demography of interacting species can influence patterns of local adaptation by affecting the potential of local populations to respond to selection. We conducted a comparative phylogeographical study of venomous rattlesnakes and their venom-resistant ground squirrel prey across California, and assessed how effective population size (Ne) estimates correspond with a previously documented pattern of rattlesnake local adaptation. Using RAD sequencing markers, we detected lineage relationships among both the rattlesnakes (Crotalus oreganus ssp.) and ground squirrels (Otospermophilus sp.) that are incongruent with previous phylogenetic hypotheses. Both rattlesnakes and squirrels share a deep divergence at the Sacramento–San Joaquin River Delta. At this broad phylogeographical scale, we found that the locally adapted rattlesnakes had higher Ne than squirrels. At the population scale, snakes also had larger Ne accompanied by larger values of several metrics of population genetic diversity. However, the specific magnitude of local adaptation of venom activity to ground squirrel venom resistance was not significantly correlated with local differences in Ne or other diversity statistics between predator and prey populations, suggesting that other factors in the geographic mosaic of coevolution contribute to the specific local-scale outcomes of this interaction. These results suggest an evolutionary mechanism that may explain some (but clearly not all) of rattlesnake local adaptation in this coevolutionary interaction – larger population sizes raise the adaptive potential of rattlesnakes compared to ground squirrels.