Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Genes, 12(11), p. 1522, 2020

DOI: 10.3390/genes11121522

Links

Tools

Export citation

Search in Google Scholar

Fourier-Transform Infrared Spectroscopy of Skeletal Muscle Tissue: Expanding Biomarkers in Primary Mitochondrial Myopathies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Primary mitochondrial myopathies (PMM) are a group of mitochondrial disorders characterized by a predominant skeletal muscle involvement. The aim of this study was to evaluate whether the biochemical profile determined by Fourier-transform infrared (FTIR) spectroscopic technique would allow to distinguish among patients affected by progressive external ophthalmoplegia (PEO), the most common PMM presentation, oculopharyngeal muscular dystrophy (OPMD), and healthy controls. Thirty-four participants were enrolled in the study. FTIR spectroscopy was found to be a sensitive and specific diagnostic marker for PEO. In particular, FTIR spectroscopy was able to distinguish PEO patients from those affected by OPMD, even in the presence of histological findings similar to mitochondrial myopathy. At the same time, FTIR spectroscopy differentiated single mtDNA deletion and mutations in POLG, the most common nuclear gene associated with mitochondrial diseases, with high sensitivity and specificity. In conclusion, our data suggest that FTIR spectroscopy is a valuable biodiagnostic tool for the differential diagnosis of PEO with a high ability to also distinguish between single mtDNA deletion and mutations in POLG gene based on specific metabolic transitions.