Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(501), p. 3122-3136, 2020

DOI: 10.1093/mnras/staa3876

Links

Tools

Export citation

Search in Google Scholar

The delay time distribution of supernovae from integral-field spectroscopy of nearby galaxies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Constraining the delay time distribution (DTD) of different supernova (SN) types can shed light on the time-scales of galaxy chemical enrichment and feedback processes affecting galaxy dynamics, and SN progenitor properties. Here, we present an approach to recover SN DTDs based on integral-field spectroscopy (IFS) of their host galaxies. Using a statistical analysis of a sample of 116 SNe in 102 galaxies, we evaluate different DTD models for SN types Ia (73), II (28), and Ib/c (15). We find the best SN Ia DTD fit to be a power law with an exponent α = −1.1 ± 0.3 (50 per cent confidence interval (C.I.)), and a time delay (between star formation and the first SNe) $Δ = 50^{+100}_{-35}~\mathrm{Myr}$ (50 per cent C.I.). For core collapse (CC) SNe, both of the Zapartas et al. DTD models for single and binary stellar evolution are consistent with our results. For SNe II and Ib/c, we find a correlation with a Gaussian DTD model with $σ = 82^{+129}_{-23}~\mathrm{Myr}$ and $σ = 56^{+141}_{-9}~\mathrm{Myr}$ (50 per cent C.I.), respectively. This analysis demonstrates that IFS opens a new way of studying SN DTD models in the local Universe.