Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Sensor and Actuator Networks, 4(9), p. 59, 2020

DOI: 10.3390/jsan9040059

Links

Tools

Export citation

Search in Google Scholar

Leveraging Stack4Things for Federated Learning in Intelligent Cyber Physical Systems

Journal article published in 2020 by Fabrizio De Vita ORCID, Dario Bruneo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During the last decade, the Internet of Things acted as catalyst for the big data phenomenon. As result, modern edge devices can access a huge amount of data that can be exploited to build useful services. In such a context, artificial intelligence has a key role to develop intelligent systems (e.g., intelligent cyber physical systems) that create a connecting bridge with the physical world. However, as time goes by, machine and deep learning applications are becoming more complex, requiring increasing amounts of data and training time, which makes the use of centralized approaches unsuitable. Federated learning is an emerging paradigm which enables the cooperation of edge devices to learn a shared model (while keeping private their training data), thereby abating the training time. Although federated learning is a promising technique, its implementation is difficult and brings a lot of challenges. In this paper, we present an extension of Stack4Things, a cloud platform developed in our department; leveraging its functionalities, we enabled the deployment of federated learning on edge devices without caring their heterogeneity. Experimental results show a comparison with a centralized approach and demonstrate the effectiveness of the proposed approach in terms of both training time and model accuracy.