Published in

Sociedade Brasileira de Microbiologia, Brazilian Journal of Microbiology, 1(44), p. 291-297

DOI: 10.1590/s1517-83822013000100043

Links

Tools

Export citation

Search in Google Scholar

Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Polycyclic aromatic hydrocarbons (PAH) are carcinogenic compounds which contaminate water and soil, and the enzymes can be used for bioremediation of these environments. This study aimed to evaluate some environmental conditions that affect the production and activity of the catechol 1,2-dioxygenase (C12O) by Mycobacterium fortuitum in the cell free and immobilized extract in sodium alginate. The bacterium was grown in mineral medium and LB broth containing 250 mg L(-1) of anthracene (PAH). The optimum conditions of pH (4.0-9.0), temperature (5-70 °C), reaction time (10-90 min) and the effect of ions in the enzyme activity were determined. The Mycobacterium cultivated in LB shown higher growth and the C12O activity was two-fold higher to that in the mineral medium. To both extracts the highest enzyme activity was at pH 8.0, however, the immobilized extract promoted the increase in the C12O activity in a pH range between 4.0 and 8.5. The immobilized extract increased the enzymatic activity time and showed the highest C12O activity at 45 °C, 20 °C higher than the greatest temperature in the cell free extract. The enzyme activity in both extracts was stimulated by Fe(3+), Hg(2+) and Mn(2+) and inhibited by NH(4+) and Cu(2+), but the immobilization protected the enzyme against the deleterious effects of K(+) and Mg(2+) in tested concentrations. The catechol 1,2-dioxygenase of Mycobacterium fortuitum in the immobilized extract has greater stability to the variations of pH, temperature and reaction time, and show higher activity in presence of ions, comparing to the cell free extract.