Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Crystals, 12(10), p. 1148, 2020

DOI: 10.3390/cryst10121148

Links

Tools

Export citation

Search in Google Scholar

Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The crystal structure of a chemical compound serves several purposes: its coordinates represent three-dimensional information about the connectivity between the atoms; it is the only technique that determines the absolute configuration of chiral molecules; it enables determining structure–function relations; and crystallographic data at atomic resolution distinguish between element types and serve as a confirmation of synthesis protocols. Here, we collected electron diffraction data from albite and from a Linde Type A (LTA) type zeolite. Both compounds are aluminosilicates with well-defined silicon and aluminum crystallographic sites. Data were recorded with the “adJUstiNg Gain detector FoR the Aramis User station” (JUNGFRAU detector) and we made use of its capability of energy discrimination to suppress noise. For both compounds, crystallographic refinement distinguishes correctly between silicon and aluminum, even though these elements have very similar electron scattering factors. These results highlight the quality of the electron diffraction data and the reliability of the models for chemical interpretation. Further development in this direction will provide enormous opportunities for structure–function studies by diffraction.