Published in

Materials Express, 11(10), p. 1950-1959, 2020

DOI: 10.1166/mex.2020.1862

Links

Tools

Export citation

Search in Google Scholar

Preparation and in vitro evaluation of doxorubicin loaded alendronate modified hollow gold nanoparticles for bone-targeted chemo-photothermal therapy

Journal article published in 2020 by Lei Yang, Yumin Hu, Yuanfen Liu, Yanyan Liu, Si Miao, Zhen Li, Bohui Xu, Yan Shen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The treatment of malignant bone tumors (including primary bone tumors and metastatic bone tumors) has always been a clinical challenge. The purpose of this study is to design a bone-targeted nano-carrier with photothermal effect to achieve chemo-photothermal therapy (CPT), which allows the minimal use of photothermal agents and chemical drugs to target bone tumors. Alendronate modified hollow gold nanoparticles (HGNPs- ALN) were synthesized using mercapto polyethylene glycol carboxyl (SH-PEG2000-COOH) as the connecting arm, fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) data show that HGNPs-ALN with a particle size of about 80 nm has been successfully synthesized. The hydroxyapatite affinity experiment in vitro indicated that HGNPs-ALN exhibited a high affinity to bone. In addition, the temperature of HGNPs-ALN under near-infrared laser irradiation can rise to 53 °C, which can achieve effective photothermal therapy for bone tumors. Bone-targeted hollow gold nanoparticles (DOX@HGNPs-ALN) loaded with doxorubicin hydrochloride (DOX) were synthesized by one-pot method. By comparing the stability and drug loading of HGNPs-ALN, it was concluded that the optimal mass ratio of HGNPs-ALN (calculated by the amount of gold) to DOX was about 1:2. HGNPs-ALN and DOX@HGNPs-ALN both have good photothermal stability and photothermal transformation properties, and confirmed the safety of HGNPs on human osteosarcoma cells. MTT experiments showed that DOX@HGNPs-ALN had the strongest killing effect on MG-63 osteosarcoma cells under laser irradiation (the killing rate is about 65%). According to these results, it can be considered that DOX@HGNPs-ALN has the potential of CPT synergistic targeting therapy for bone tumors.