Published in

MDPI, Crystals, 12(10), p. 1145, 2020

DOI: 10.3390/cryst10121145

Links

Tools

Export citation

Search in Google Scholar

Shock Damage Analysis in Serial Femtosecond Crystallography Data Collected at MHz X-ray Free-Electron Lasers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Serial femtosecond crystallography (SFX) data were recorded at the European X-ray free-electron laser facility (EuXFEL) with protein microcrystals delivered via a microscopic liquid jet. An XFEL beam striking such a jet may launch supersonic shock waves up the jet, compromising the oncoming sample. To investigate this efficiently, we employed a novel XFEL pulse pattern to nominally expose the sample to between zero and four shock waves before being probed. Analyzing hit rate, indexing rate, and resolution for diffraction data recorded at MHz pulse rates, we found no evidence of damage. Notably, however, this conclusion could only be drawn after careful identification and assimilation of numerous interrelated experimental factors, which we describe in detail. Failure to do so would have led to an erroneous conclusion. Femtosecond photography of the sample-carrying jet revealed critically different jet behavior from that of all homogeneous liquid jets studied to date in this manner.