Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Biomedical Physics and Engineering Express, 2(7), p. 025002, 2021

DOI: 10.1088/2057-1976/abd3de

Links

Tools

Export citation

Search in Google Scholar

Automated measurements of morphological parameters of muscles and tendons

Journal article published in 2020 by Shaima Ibraheem Jabbar ORCID, Charles R. Day, Edward Chadwick ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Capturing accurate representations of musculoskeletal system morphology is a core aspect of musculoskeletal modelling of the upper limb. Measurements of important geometric parameters such as the thickness of muscles and tendons are key descriptors of the underlying morphology. Though the measurement of those parameters can be estimated manually using cadaveric measurements, this is not an appropriate technique for constructing a personalised musculoskeletal model for an individual. Therefore, this work proposes and applies a novel method for evaluating the geometric parameters of the upper extremity based on automated ultrasound image analysis. The proposed algorithm involves advanced techniques from artificial intelligence and image processing to outline the necessary details of the musculoskeletal morphology from appropriately enhanced ultrasound images. The ultrasound images were collected from 25 healthy volunteers from different parts of upper limb. The results were compared with measurements of a manual evaluation. Our results showed that the average discrepancy between the manual and automatic measures of triceps thickness is 0.115 mm. This represents improved accuracy compared to several current approaches.