Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 12(10), p. 2513, 2020

DOI: 10.3390/nano10122513

Links

Tools

Export citation

Search in Google Scholar

Combined Effect of Active Packaging of Polyethylene Filled with a Nano-Carrier of Salicylate and Modified Atmosphere to Improve the Shelf Life of Fresh Blueberries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Blueberries are popular among consumers for their high nutritional value but are highly perishable due to the microbial decay. The use of active packaging that is able to interact with the food through releasing or absorbing substances can be a valid approach to preserve the quality and increase the fruit’s shelf-life. In this paper, an active packaging based on polyethylene (PE) filled with a nano-carrier of salicylate was prepared and characterized. Fresh blueberries were packaged in passive modified atmosphere packaging (pMA) for 13 days at 8 °C. The combination of the active filler in bulk and pMA showed a significant inhibition of mold development and a reduction of the respiration rate of fruits. Moreover, the release of salicylate on blueberries did not alter the fruits’ sensory traits and preserved the firmness and the nutritional quality. Finally, the combination of active packaging and pMA resulted a valid solution to extend blueberries’ shelf-life up to 13 days.