Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-78948-1

Links

Tools

Export citation

Search in Google Scholar

UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe effects of ultraviolet-C light (UVC) on vitamin C and phenolic compounds in acerola during postharvest storage were investigated in order to elucidate the mechanism inducing the antioxidant systems. The fruits, stored at 10 °C for 7 days after a hormetic UVC irradiation (two pulses of 0.3 J/cm2), showed significantly less degradation of vitamin C and phenolic compounds than the control without the UVC challenge. UVC activated the L-galactono-1,4-lactone dehydrogenase (GalDH), a key enzyme for vitamin C biosynthesis, and altered the composition of phenolic compounds, through phenolic biosynthesis, in acerola during postharvest storage. UVC also induced reactive oxygen species (ROS) productions at immediate (day 0) and late (day 7) times during postharvest storage through the mitochondrial electron transport chain and NADPH oxidase, respectively. Results suggest that UVC helps in the retention of vitamin C and phenolic content in acerola by altering ascorbic acid and phenolic metabolism through an increase in mitochondrial activity and a ROS-mediated mechanism. Data showed the beneficial effects of UVC on maintenance of nutraceutical quality in acerola during postharvest storage and supplied new insights into understanding the mechanism by which UVC irradiation enhance the antioxidant system in fruits.