Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 24(10), p. 8875, 2020

DOI: 10.3390/app10248875

Links

Tools

Export citation

Search in Google Scholar

Robust Adaptive Synchronization of a Class of Uncertain Chaotic Systems with Unknown Time-Delay

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, a robust adaptive control strategy is proposed to synchronize a class of uncertain chaotic systems with unknown time delays. Using Lyapunov theory and Lipschitz conditions in chaotic systems, the necessary adaptation rules for estimating uncertain parameters and unknown time delays are determined. Based on the proposed adaptation rules, an adaptive controller is recommended for the robust synchronization of the aforementioned uncertain systems that prove the robust stability of the proposed control mechanism utilizing the Lyapunov theorem. Finally, to evaluate the proposed robust and adaptive control mechanism, the synchronization of two Jerk chaotic systems with finite non-linear uncertainty and external disturbances as well as unknown fixed and variable time delays are simulated. The simulation results confirm the ability of the proposed control mechanism in robust synchronization of the uncertain chaotic systems as well as to estimate uncertain and unknown parameters.