Published in

American Association for the Advancement of Science, Science, 6522(370), 2020

DOI: 10.1126/science.aaz4910

Links

Tools

Export citation

Search in Google Scholar

Genetic interaction mapping informs integrative structure determination of protein complexes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

From phenotype to structure Much insight has come from structures of macromolecular complexes determined by methods such as crystallography or cryo–electron microscopy. However, looking at transient complexes remains challenging, as does determining structures in the context of the cellular environment. Braberg et al. used an integrative approach in which they mapped the phenotypic profiles of a comprehensive set of mutants in a protein complex in the context of gene deletions or environmental perturbations (see the Perspective by Wang). By associating the similarity between phenotypic profiles with the distance between residues, they determined structures for the yeast histone H3-H4 complex, subunits Rpb1-Rpb2 of yeast RNA polymerase II, and subunits RpoB-RpoC of bacterial RNA polymerase. Comparison with known structures shows that the accuracy is comparable to structures determined based on chemical cross-links. Science , this issue p. eaaz4910 ; see also p. 1269