American Association for the Advancement of Science, Science, 6522(370), p. 1317-1323, 2020
Full text: Unavailable
Rheology of aging protein condensates Protein condensates that form by undergoing liquid-liquid phase separation will show changes in their rheological properties with time, a process known as aging. Jawerth et al. used laser tweezer–based active and microbead-based passive rheology to characterize the time-dependent material properties of protein condensates (see the Perspective by Zhang). They found that condensate aging is not gelation of the condensates, but rather a changing viscoelastic Maxwell liquid with a viscosity that strongly increases with age, whereas the elastic modulus stays the same. Science , this issue p. 1317 ; see also p. 1271