Published in

American Association for the Advancement of Science, Science, 6522(370), 2020

DOI: 10.1126/science.aba4937

Links

Tools

Export citation

Search in Google Scholar

Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Trunk formation in a dish Building mammalian embryos from self-organizing stem cells in culture would accelerate the investigation of morphogenetic and differentiation processes that shape the body plan. Veenvliet et al. report a method for generating embryonic trunk-like structures (TLSs) with a neural tube, somites, and gut by embedding mouse embryonic stem cell aggregates in an extracellular matrix surrogate. Live imaging and comparative single-cell transcriptomics indicate that TLS formation is analogous to mouse development. TLSs therefore provide a scalable, tractable, and accessible high-throughput platform for decoding mammalian embryogenesis at a high level of resolution. Science , this issue p. eaba4937