Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, Journal of Medical Internet Research, 12(22), p. e25442, 2020

DOI: 10.2196/25442

Links

Tools

Export citation

Search in Google Scholar

An Artificial Intelligence Model to Predict the Mortality of COVID-19 Patients at Hospital Admission Time Using Routine Blood Samples: Development and Validation of an Ensemble Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background COVID-19, which is accompanied by acute respiratory distress, multiple organ failure, and death, has spread worldwide much faster than previously thought. However, at present, it has limited treatments. Objective To overcome this issue, we developed an artificial intelligence (AI) model of COVID-19, named EDRnet (ensemble learning model based on deep neural network and random forest models), to predict in-hospital mortality using a routine blood sample at the time of hospital admission. Methods We selected 28 blood biomarkers and used the age and gender information of patients as model inputs. To improve the mortality prediction, we adopted an ensemble approach combining deep neural network and random forest models. We trained our model with a database of blood samples from 361 COVID-19 patients in Wuhan, China, and applied it to 106 COVID-19 patients in three Korean medical institutions. Results In the testing data sets, EDRnet provided high sensitivity (100%), specificity (91%), and accuracy (92%). To extend the number of patient data points, we developed a web application (BeatCOVID19) where anyone can access the model to predict mortality and can register his or her own blood laboratory results. Conclusions Our new AI model, EDRnet, accurately predicts the mortality rate for COVID-19. It is publicly available and aims to help health care providers fight COVID-19 and improve patients’ outcomes.