Published in

Elsevier, Experimental Eye Research, 6(84), p. 1135-1139

DOI: 10.1016/j.exer.2006.01.030

Links

Tools

Export citation

Search in Google Scholar

A dual Golgi- and mitochondria-localised Ala25Ser precursor cystatin C: An additional tool for characterising intracellular mis-localisation leading to increased AMD susceptibility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An artificial mutant Ala25Ser precursor cystatin C was created to help elucidate the cause of intracellular mis-localisation of the biochemically related variant B (Ala25Thr) precursor cystatin C to the mitochondria. Homozygotes of variant B precursor cystatin C were reported to carry an increased susceptibility to developing the exudative form of AMD. Ala25Ser precursor cystatin C shows a dual distribution to the Golgi apparatus and to the mitochondria. This localisation is thus intermediary between that of wild-type cystatin C (targeted to ER/Golgi compartment) and that of variant B precursor cystatin C. Furthermore, the level of secretion of Ala25Ser cystatin C by RPE cells is intermediary between wild type and variant B cystatin C. Ala25Ser precursor cystatin C thus represents a biochemical intermediate between the wild type and the AMD-associated cystatin C and as such, is a novel tool for the investigation of the mechanism of intracellular mis-localisation of variant B cystatin C. Our findings further support the hypothesis that substitution of the alanine residue in the penultimate position of precursor cystatin C signal sequence with a less hydrophobic amino acid residue, such as threonine (as in variant B cystatin C) or serine is sufficient to impair the intracellular trafficking and processing of the protein. (c) 2006 Elsevier Ltd. All rights reserved. ; Ratnayaka, Arjuna Paraoan, Luminita Spiller, Dave G. Hiscott, Paul Nelson, Glyn White, Michael R. H. Grierson, Ian