Published in

MDPI, Remote Sensing, 24(12), p. 4027, 2020

DOI: 10.3390/rs12244027

Links

Tools

Export citation

Search in Google Scholar

ℱ3-Net: Feature Fusion and Filtration Network for Object Detection in Optical Remote Sensing Images

Journal article published in 2020 by Xinhai Ye, Fengchao Xiong ORCID, Jianfeng Lu, Jun Zhou, Yuntao Qian
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Object detection in remote sensing (RS) images is a challenging task due to the difficulties of small size, varied appearance, and complex background. Although a lot of methods have been developed to address this problem, many of them cannot fully exploit multilevel context information or handle cluttered background in RS images either. To this end, in this paper, we propose a feature fusion and filtration network (F3-Net) to improve object detection in RS images, which has higher capacity of combining the context information at multiple scales while suppressing the interference from the background. Specifically, F3-Net leverages a feature adaptation block with a residual structure to adjust the backbone network in an end-to-end manner, better considering the characteristics of RS images. Afterward, the network learns the context information of the object at multiple scales by hierarchically fusing the feature maps from different layers. In order to suppress the interference from cluttered background, the fused feature is then projected into a low-dimensional subspace by an additional feature filtration module. As a result, more relevant and accurate context information is extracted for further detection. Extensive experiments on DOTA, NWPU VHR-10, and UCAS AOD datasets demonstrate that the proposed detector achieves very promising detection performance.