Published in

MDPI, Journal of Fungi, 4(6), p. 344, 2020

DOI: 10.3390/jof6040344

Links

Tools

Export citation

Search in Google Scholar

Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Woronin bodies are membrane-bound organelles of filamentous ascomycetes that mediate hyphal compartmentalization by plugging septal pores upon hyphal damage. Their major component is the peroxisomal protein Hex1, which has also been implicated in additional cellular processes in fungi. Here, we analyzed the Hex1 homolog of Verticillium dahliae, an important asexual plant pathogen, and we report its pleiotropic involvement in fungal growth, physiology, stress response, and pathogenicity. Alternative splicing of the Vdhex1 gene can lead to the production of two Hex1 isoforms, which are structurally similar to their Neurospora crassa homolog. We show that VdHex1 is targeted to the septum, consistently with its demonstrated function in sealing hyphal compartments to prevent excessive cytoplasmic bleeding upon injury. Furthermore, our investigation provides direct evidence for significant contributions of Hex1 in growth and morphogenesis, as well as in asexual reproduction capacity. We discovered that Hex1 is required both for normal responses to osmotic stress and factors that affect the cell wall and plasma-membrane integrity, and for normal resistance to oxidative stress and reactive oxygen species (ROS) homeostasis. The Vdhex1 mutant exhibited diminished ability to colonize and cause disease on eggplant. Overall, we show that Hex1 has fundamentally important multifaceted roles in the biology of V. dahliae.