Published in

MDPI, Sensors, 23(20), p. 6946, 2020

DOI: 10.3390/s20236946

Links

Tools

Export citation

Search in Google Scholar

Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application

Journal article published in 2020 by Xuyang Gao ORCID, Yibing Shi, Kai Du, Qi Zhu, Wei Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the field of ultrasonic nondestructive testing (NDT), robust and accurate detection of defects is a challenging task because of the attenuation and noising of the ultrasonic wave from the structure. For determining the reflection characteristics representing the position and amplitude of ultrasonic detection signals, sparse blind deconvolution methods have been implemented to separate overlapping echoes when the ultrasonic transducer impulse response is unknown. This letter introduces the ℓ1/ℓ2 ratio regularization function to model the deconvolution as a nonconvex optimization problem. The initialization influences the accuracy of estimation and, for this purpose, the alternating direction method of multipliers (ADMM) combined with blind gain calibration is used to find the initial approximation to the real solution, given multiple observations in a joint sparsity case. The proximal alternating linearized minimization (PALM) algorithm is embedded in the iterate solution, in which the majorize-minimize (MM) approach accelerates convergence. Compared with conventional blind deconvolution algorithms, the proposed methods demonstrate the robustness and capability of separating overlapping echoes in the context of synthetic experiments.