Published in

Springer Verlag, AMB Express, 1(10), 2020

DOI: 10.1186/s13568-020-01154-9

Links

Tools

Export citation

Search in Google Scholar

Construction of a mApple-D6A3-mediated biosensor for detection of heavy metal ions

Journal article published in 2020 by Yangyang Ji, Feifei Guan, Xin Zhou, Xiaoqing Liu, Ningfeng Wu, Daling Liu, Jian Tian ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPollution of heavy metals in agricultural environments is a growing problem to the health of the world’s human population. Green, low-cost, and efficient detection methods can help control such pollution. In this study, a protein biosensor, mApple-D6A3, was built from rice-derived Cd2+-binding protein D6A3 fused with the red fluorescent protein mApple at the N-terminus to detect the contents of heavy metals. Fluorescence intensity of mApple fused with D6A3 indicated the biosensor’s sensitivity to metal ions and its intensity was more stable under alkaline conditions. mApple-D6A3 was most sensitive to Cu2+, then Ni2+, then Cd2+. Isothermal titration calorimetry experiments demonstrated that mApple-D6A3 successfully bound to each of these three metal ions, and its ability to bind the ions was, from strongest to weakest, Cu2+ > Cd2+ > Ni2+. There were strong linear relationships between the fluorescence intensity of mApple-D6A3 and concentrations of Cd2+ (0–100 μM), Cu2+ (0–60 μM) and Ni2+ (0–120 μM), and their respective R2 values were 0.994, 0.973 and 0.973. When mApple-D6A3 was applied to detect concentrations of heavy metal ions in water (0–0.1 mM) or culture medium (0–1 mM), its accuracy for detection attained more than 80%. This study demonstrates the potential of this biosensor as a tool for detection of heavy metal ions.