Published in

MDPI, Microorganisms, 12(8), p. 1932, 2020

DOI: 10.3390/microorganisms8121932

Links

Tools

Export citation

Search in Google Scholar

Genotyping of Francisella tularensis subsp. holarctica from Hares in Germany

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Francisella tularensis is the causative agent of the zoonotic disease tularemia. In Germany, most human infections are caused by contact with infected hares. The aim of this study was to characterize Francisella tularensis subsp. holarctica strains isolated from hares in Germany and to develop bioinformatics tools to analyze their genetic relatedness. In total, 257 German isolates—obtained mainly from hares (n = 233), other vertebrate animals, and ticks, but also from humans (n = 3)—were analyzed within this study. Publically available sequence data from 49 isolates were used to put our isolates into an epidemiological context and to compare isolates from natural foci and humans. Whole-genome sequences were analyzed using core-genome Multi-Locus-Sequence-Typing, canonical Single Nucleotide Polymorphism (SNP) typing and whole-genome SNP typing. An overall conformity of genotype clustering between the typing methods was found, albeit with a lower resolution for canonical single SNP typing. The subclade distribution, both on local and national levels, among strains from humans and hares was similar, suggesting circulation of the same genotypes both in animals and humans. Whilst close to identical isolates of the same subclade were found distributed over large areas, small geographical foci often harbored members of different subclades. In conclusion, although genomic high-resolution typing was shown to be robust, reproducible and allowed the identification of highly closely related strains, genetic profiling alone is not always conclusive for epidemiological linkage of F. tularensis strains.