Published in

Oxford University Press, Schizophrenia Bulletin: The Journal of Psychoses and Related Disorders, 2(47), p. 277-283, 2020

DOI: 10.1093/schbul/sbaa170

Links

Tools

Export citation

Search in Google Scholar

Predictive Performance of Exposome Score for Schizophrenia in the General Population

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Previously, we established an estimated exposome score for schizophrenia (ES-SCZ) as a cumulative measure of environmental liability for schizophrenia to use in gene–environment interaction studies and for risk stratification in population cohorts. Hereby, we examined the discriminative function of ES-SCZ for identifying individuals diagnosed with schizophrenia spectrum disorder in the general population by measuring the area under the receiver operating characteristic curve (AUC). Furthermore, we compared this ES-SCZ method to an environmental sum score (Esum-SCZ) and an aggregate environmental score weighted by the meta-analytical estimates (Emet-SCZ). We also estimated ORs and Nagelkerke’s R2 for ES-SCZ in association with psychiatric diagnoses and other medical outcomes. ES-SCZ showed a good discriminative function (AUC = 0.84) and statistically significantly performed better than both Esum-SCZ (AUC = 0.80) and Emet-SCZ (AUC = 0.80). At optimal cut point, ES-SCZ showed similar performance in ruling out (LR− = 0.20) and ruling in (LR+ = 3.86) schizophrenia. ES-SCZ at optimal cut point showed also a progressively greater magnitude of association with increasing psychosis risk strata. Among all clinical outcomes, ES-SCZ was associated with schizophrenia diagnosis with the highest OR (2.76, P < .001) and greatest explained variance (R2 = 14.03%), followed by bipolar disorder (OR = 2.61, P < .001, R2 = 13.01%) and suicide plan (OR = 2.44, P < .001, R2 = 12.44%). Our findings from an epidemiologically representative general population cohort demonstrate that an aggregate environmental exposure score for schizophrenia constructed using a predictive modeling approach—ES-SCZ—has the potential to improve risk prediction and stratification for research purposes and may help gain insight into the multicausal etiology of psychopathology.