Published in

MDPI, Polymers, 12(12), p. 2883, 2020

DOI: 10.3390/polym12122883

Links

Tools

Export citation

Search in Google Scholar

Antimicrobial Activity and GC-MS Profile of Copaiba Oil for Incorporation into Xanthosoma mafaffa Schott Starch-Based Films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present study evaluated the effect of the incorporation of copaiba oil, in direct and in microencapsulated form, into films based on Xanthosoma mafaffa Schott starch. Initially, the characterization of copaiba oil by gas chromatograph coupled with mass spectrometry (GC-MS) and its antimicrobial activity against gram-positive and gram-negative bacteria was performed. The films were produced by the casting technique and characterized in relation to physical, chemical, structural, and antimicrobial activity. Sesquiterpenes, mainly β-caryophyllene, were the predominant compounds in copaiba oil, showing antimicrobial activity against B. subtilis and S. aureus. The films showed forming capacity, however, was observed a decrease in solubility and revealed an increase in hydrophobic characteristics. However, the oil reduced the tensile strength and elongation, while the microcapsules did not influence the mechanical properties in comparison to the control film. From microstructure analysis, changes in the films roughness and surface were observed after the addition of oil both directly and in microencapsulated form. Films incorporated with microparticles were able to inhibit the gram-positive bacteria tested, forming inhibition zones, indicating that the encapsulation of copaiba oil was more efficient for protecting bioactive compounds from the oil, suggesting the possible application of mangarito starch-based films incorporated with copaiba oil as biodegradable packaging.