Published in

SAGE Publications, Technology in Cancer Research and Treatment, (19), p. 153303382097403, 2020

DOI: 10.1177/1533033820974030

Links

Tools

Export citation

Search in Google Scholar

Dose Prescription Methods in Stereotactic Body Radiotherapy for Small Peripheral Lung Tumors: Approaches Based on the Gross Tumor Volume Are Superior to Prescribing a Dose That Covers 95% of the Planning Target Volume

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Purpose: We aimed to validate the usefulness of prescriptions based on gross tumor volume for stereotactic body radiotherapy for small peripheral lung tumors. Materials and Methods: Radiotherapy treatment planning data of 50 patients with small peripheral lung tumors (adenocarcinoma: 24, squamous cell carcinoma: 10, other: 1, unknown: 15) receiving breath-hold computed tomography-guided stereotactic body radiotherapy at our institution during 2013–2016 were analyzed. For each case, 3 dose prescription methods were applied: one based on 95% (PTVD95%) of the planning target volume, one based on 50% of the gross tumor volume (GTVD50%), and one based on 98% (GTVD98%) of the gross tumor volume. The maximum (GTVDmax), minimum (GTVDmin), and mean gross tumor volume dose (GTVDmean) and the dose covering 98% of the gross tumor volume were calculated to evaluate variations in the gross tumor volume dose. Results: Upon switching to GTVD50%, the variations in GTVDmax and GTVDmean decreased significantly, compared with variations observed for PTVD95% (p < 0.01), but the variation in GTVDmin increased significantly (p < 0.01). Upon switching to the GTVD98%, the variation in GTVDmean decreased significantly compared with that observed for PTVD95% (p < 0.01). Conclusion: Switching from prescriptions based on 95% of the planning target volume to those based on 98% of the gross tumor volume decreased variations among cases in the overall gross tumor volume dose. Overall, prescriptions based on 98% of the gross tumor volume appear to be more suitable than those based on 95% of the planning target volume in cases of small peripheral lung tumors treated with stereotactic body radiotherapy.