Published in

International Union of Crystallography, Journal of Applied Crystallography, 6(53), p. 1531-1541, 2020

DOI: 10.1107/s1600576720013576

Links

Tools

Export citation

Search in Google Scholar

DLSR: a solution to the parallax artefact in X-ray diffraction computed tomography data

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A new tomographic reconstruction algorithm is presented, termed direct least-squares reconstruction (DLSR), which solves the well known parallax problem in X-ray-scattering-based experiments. The parallax artefact arises from relatively large samples where X-rays, scattered from a scattering angle 2θ, arrive at multiple detector elements. This phenomenon leads to loss of physico-chemical information associated with diffraction peak shape and position (i.e. altering the calculated crystallite size and lattice parameter values, respectively) and is currently the major barrier to investigating samples and devices at the centimetre level (scale-up problem). The accuracy of the DLSR algorithm has been tested against simulated and experimental X-ray diffraction computed tomography data using the TOPAS software.