Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-78245-x

Links

Tools

Export citation

Search in Google Scholar

Predictors of right ventricular function and size in patients with hypertrophic cardiomyopathy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe investigated factors associated with right ventricular (RV) function and size in hypertrophic cardiomyopathy (HCM) patients. Two hundred fifty-three consecutive HCM patients and 20 healthy volunteers underwent cardiac magnetic resonance examination. In addition to measuring RV function (ejection fraction—RVEF) and size (end-diastolic volume—RVEDV), each image was inspected for the presence of RV and left ventricular (LV) hypertrophy, and the maximal wall thickness of the left and right ventricles was recorded. HCM patients had higher RVEF and lower RVEDV than healthy volunteers and similar RV mass. The mean RV wall thickness was higher in HCM patients than in controls. LV late gadolinium enhancement (LGE) was present in 89.7% of patients, and RV LGE was present in 3.1% of patients (p < 0.0001). Univariate and multivariable analyses revealed that LVEF, peak LV outflow tract gradient, LV LGE, maximal LV wall thickness, and tricuspid regurgitation (TR) volume by magnetic resonance imaging were positive predictors of RVEF. In addition to TR volume, the only independent predictor of RVEF < 45% was LVEF (odds ratio = 0.80, 95% confidence interval 0.67–0.95). Multivariable analysis revealed that LVEDV and TR volume were positive predictors of RVEDV, whereas negative predictors were RVEF, maximal RV wall thickness, LV LGE, and age. Neither estimated systolic pulmonary artery pressure nor TR grade by echocardiography proved to be predictors of RVEF. There were no differences in either the maximal RV wall thickness or the maximal left ventricular (LV) wall thickness in patients stratified according to NYHA functional class (p = 0.93 and p = 0.15, respectively). There were no differences in mean RV wall thickness in patients categorised based on the number of clinical risk factors for sudden cardiac death (SCD), i.e., non-sustained ventricular tachycardia, family history of SCD, or unexplained syncope (p = 0.79). On the other hand, there was a weak positive association between RV hypertrophy and the estimated probability of SCD at 5 years (rho = 0.16, p = 0.01). RV systolic dysfunction measured as decreased RVEF was uncommon in HCM and was associated with poor LV systolic function. LV also had a significant impact on RV size.