Published in

Lippincott, Williams & Wilkins, Neurology: Genetics, 6(6), p. e528, 2020

DOI: 10.1212/nxg.0000000000000528

Links

Tools

Export citation

Search in Google Scholar

Genotype-phenotype correlations in patients with de novo KCNQ2 pathogenic variants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ObjectiveEarly identification of de novo KCNQ2 variants in patients with epilepsy raises prognostic issues toward optimal management. We analyzed the clinical and genetic information from a cohort of patients with de novo KCNQ2 pathogenic variants to dissect genotype-phenotype correlations.MethodsPatients with de novo KCNQ2 pathogenic variants were identified from Italy, Denmark, and Belgium. Atomic resolution Kv7.2 structures were also generated using homology modeling to map the variants.ResultsWe included 34 patients with a mean age of 4.7 years. Median seizure onset was 2 days, mainly with focal seizures with autonomic signs. Twenty-two patients (65%) were seizure free at the mean age of 1.2 years. More than half of the patients (17/32) displayed severe/profound intellectual disability; however, 4 (13%) of them had a normal cognitive outcome.A total of 28 de novo pathogenic variants were identified, most missense (25/28), and clustered in conserved regions of the protein; 6 variants recurred, and 7 were novel. We did not identify a relationship between variant position and seizure offset or cognitive outcome in patients harboring missense variants. Besides, recurrent variants were associated with overlapping epilepsy features but also variable evolution regarding the intellectual outcome.ConclusionsWe highlight the complexity of variant interpretation to assess the impact of a class of de novo KCNQ2 mutations. Genetic modifiers could be implicated, but the study paradigms to successfully address the impact of each single mutation need to be developed.